
Flow of viscous fluid 

All fluids are viscous. In the case where the viscous effect is minimal, the flow 
can be treated as an ideal fluid, otherwise the fluid must be treated as a 
viscous fluid. For example, it is necessary to treat a fluid as a viscous fluid in 
order to analyse the pressure loss due to a flow, the drag acting on a body 
in a flow and the phenomenon where flow separates from a body. In this 
chapter, such fundamental matters are explained to obtain analytically the 
relation between the velocity, pressure, etc., in the flow of a two-dimensional 
incompressible viscous fluid. 

Consider the elementary rectangle of fluid of side dx, side dy and thickness 
b as shown in Fig. 6.1 (b being measured perpendicularly to the paper). The 
velocities in the x and y directions are u and D respectively. For the x 

Fig. 6.1 Flow balance in a fluid element 
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direction, by deducting the outlet mass flow rate from the inlet mass flow rate, 
the fluid mass stored in the fluid element per unit time can be obtained, i.e. 

Similarly, the fluid mass stored in it per unit time in the y direction is 

The mass of fluid element (pbdxdy) ought to increase by a(pbdxdy/at) in 
unit time by virtue of this stored fluid. Therefore, the following equation is 
obtained: 

or 
= o  -+-+- aP a(Pv) 

at ax ay 
(6.1)' 

Equation (6.1) is called the continuity equation. This equation is applicable 
to the unsteady flow of a compressible fluid. In the case of steady flow, the 
first term becomes zero. 

For an incompressible fluid, p is constant, so the following equation is 
obtained: 

(6.2)' 

This equation is applicable to both steady and unsteady flows. 

becomes, using cylindrical coordinates, 
In the case of an axially symmetric flow as shown in Fig. 6.2, eqn (6.2) 

As the continuity equation is independent of whether the fluid is viscous or 
not, the same equation is applicable also to an ideal fluid. 

Consider an elementary rectangle of fluid of side dx, side dy and thickness b 
as shown in Fig. 6.3, and apply Newton's second law of motion. Where the 

' &/ax + au/ay + aw/az is generally called the divergence of vector Y (whose components x, y, 
z are u, u ,  w) and is expressed as div Y or V K  If we use this, eqns (6.1) and (6.2) (two-dimensional 
flow, so w = 0) are expressed respectively as the following equations: 

aP aP -+div(pY)=O or - + V ( p Y ) = O  
at at 

(6.1)' 

div(pY) = 0 or V(pY) = 0 (6.2)' 
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Fig. 6.2 Axially symmetric flow 

Fig. 6.3 Balance of forces on a fluid element: (a) velocity; (b) pressure; (3 angular deformation; 
(d) relation between tensile stress and shearing stress by elongation transformation of x direction; 
(e) velocity of angular deformation by elongation and contraction 

forces acting on this element are F(F,, F,), the following equations are 
obtained for the x and y axes respectively: 

pbdxdy- = F, 

pbdxdy- du = F, 1 (6.4) dt 
dv 
dt 
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The left-hand side of eqn (6.4) expresses the inertial force which is the 
product of the mass and acceleration of the fluid element. The change in 
velocity of this element is brought about both by the movement of position 
and by the progress of time. So the velocity change du at time dt is expressed 
by the following equation: 

a u a u  au 
at ax ay 

du = -dt + --dx + -dy 

Therefore, 
du au audx audy au aU _-- - + - - + - - ~ - + u - + ~ -  
dt at axdt aydt at ax ay 

Substituting this into eqn (6.4), 

Next, the force F acting on the elements comprises the body force 
F,(B,, By), pressure force FJP,, P,) and viscous force F,(S,, S,). In other 
words, F, and F, are expressed by the following equation: 

F, = B, + P, + S ,  
F, = By + P, + S, 

Body force Fb(B, By) 
(These forces act directly throughout the mass, such as the gravitational 
force, the centrifugal force, the electromagnetic force, etc.) Putting X and Y 
as the x and y axis components of such body forces acting on the mass of 
fluid, then 

B, = Xpb dx dy 
By = Ypbdxdy 

For the gravitational force, X = 0, Y = -9. 

Pressure force Fp(Px, Py) 
Here, 

Viscous force Fs(Sx, Sy) 

Force in the x direction due to angular deformation, S,, Putting the strain of 
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the small element of fluid y = y1 + y2, the corresponding stress is expressed 
as = p @/at: 

au av 
at 

so. 

Sxl =-bdxdy=p & (c -+- az iy)bdxdy=p aY 

Force in the x direction due to elongation transformation, Sxz Consider the 
rhombus EFGH inscribed in a cubic fluid element ABCD of unit thickness as 
shown in Fig. 6.3(d), which shows that an elongated flow to x direction is a 
contracted flow to y direction. This deformation in the x and y directions 
produces a simple angular deformation seen in the rotation of the faces of the 
rhombus. 

Now, calculating the deformation per unit time, the velocity of angular 
deformation @/at becomes as seen from Fig. 6.3(e). 

d e  .& 
- --ax=- @ 

at JZ ax 

@ . &  
at ax 

Therefore, a shearing stress z acts on the four faces of the rhombus EFGH. 

= p- = p- 

For equilibrium of the force on face EG due to the tensile stress ox and 
the shear forces on EH and HG due to z 

ox = 2 x z /Zz~0~45"  = 2 t  
au 

u, = 2p- ax 
Considering the fluid element having sides dx,dy and thickness b, the 

tensile stress in the x direction on the face at distance dx becomes 
aa 

ox + 2 dx. This stress acts on the face of area b dy, so the force uxz in the 
ax 

x direction is 

Sx2 = -(a,)& dy + (~x)x+dxb dy = 

Therefore, 

(6.10) 

(6.1 1) 
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Louis Marie Henri Navier (1785-1836) 
Born in Dijon, France. Actively worked in the 
educational and bridge engineering fields. His 
design of a suspension bridge over the River Seine 
in Paris attracted public attention. In analysing fluid 
movement, thought of an assumed force by 
repulsion and absorption between neighbouring 
molecules in addition to the force studied by Euler 
to find the equation of motion of fluid. Thereafter, 
through research by Cauchy, Poisson and Saint- 
Venant, Stokes derived the present equations, 
including viscosity. 

Substituting eqns (6.7), (6.8) and (6.10) into eqn (6.5), the following equation 
is obtained: 

t (6.12) 

These equations are called the Navier-Stokes equations. In the inertia term, 
the rates of velocity change with position and 

and so are called the convective accelerations. 

(6.12) become the following equations: 
In the case of axial symmetry, when cylindrical coordinates are used, eqns 

(6.13) 

where R is the Y direction component of external force acting on the fluid of 
unit mass. 

The vorticity i is 
(6.14) 

au a u  CY--- 
ax a 

and the shearing stress is 

(6.15) 
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The continuity equation (6.3), along with equation (6.19, are convenient 
for analysing axisymmetric flow in pipes. 

Now, omitting the body force terms, eliminating the pressure terms by 
partial differentiation of the upper equation of eqn (6.12) by y and the lower 
equation by x, and then rewriting these equations using the equation of 
vorticity (4.7), the following equation is obtained: 

(6.16) 

For ideal flow, p = 0, so the right-hand side of eqn (6.11) becomes zero. 
Then it is clear that the vorticity does not change in the ideal flow process. 
This is called the vortex theory of Helmholz. 

Now, non-dimensionalise the above using the representative size 1 and the 
representative velocity U. 

x* = x / l  y* = y/l 
U* = u/u v* = v/u 
t* = t U / l  
e* = av*/ax* - &*lay* 

Re = pUl/p 

(6.17) 

Using these equations rewrite eqn (6.16) to obtain the following equation: 

ai* * ay* a[* 1 a2C 
- + v * - = -  -+- 
ax* ay* Re (ax*’ ::) - (6.18) 

Equation (6.18) is called the vorticity transport equation. This equation 
shows that the change in vorticity due to fluid motion equals the diffusion of 
vorticity by viscosity. The term 1/Re corresponds to the coefficient of 
diffusion. Since a smaller Re means a larger coefficient of diffusion, the 
diffusion of vorticity becomes larger, too. 

In the Navier-Stokes equations, the convective acceleration in the inertial 
term is non-linear2. Hence it is difficult to obtain an analytical solution for 
general flow. The strict solutions obtained to date are only for some special 
flows. Two such examples are shown below. 

6.3.1 Flow between parallel plates 

Let us study the flow of a viscous fluid between two parallel plates as shown 
in Fig. 6.4, where the flow has just passed the inlet length (see Section 7.1) 

* The case where an equation is not a simple equation for the unknown function and its partial 
differential function is called non-linear. 
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Fig. 6.4 Laminar flow between parallel plates 

where it had flowed in the laminar state. For the case of a parallel flow like 
this, the Navier-Stokes equation (6.12) is extremely simple as follows: 
1. As the velocity is only u since u = 0, it is sufficient to use only the upper 

2. As this flow is steady, u does not change with time, so &/at = 0. 
3. As there is no body force, pX = 0. 
4. As this flow is uniform, u does not change with position, so aulax = 0 

5.  Since u = 0, the lower equation of (6.12) simply expresses the hydrostatic 

So, the upper equation of eqn (6.12) becomes 

equation. 

and $u/ax’ = 0. 

pressure variation and has no influence in the x direction. 

(6.1 9)3 
d’u dp 

PG=;i;; 

’ Consider the balance of forces acting on the respective faces of an assumed small volume 
dx dy (of unit width) in a fluid. 

Forces acting on a small volume between parallel plates 

Since there is no change of momentum between the two faces, the following equation is 
obtained: 

pdy- p + - b  dy-Tdx+ T+-dy b = O  ( 3  ( :; 1 
Therefore dr dp 

dy=z 
and 

du d2u dp 
dY dy2 - dx r = p -  since p- -- (6.19)‘ 
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By integrating the above equation twice about y, the following equation is 
obtained: 

u = --y2 dp + c ,y+c, 2p dx 
(6.20) 

Using u = 0 as the boundary condition at y = 0 and h, c1 and c2 are found 
as follows: 

1 dP u = ---(h - y)y 
2p dx 

It is clear that the velocity distribution now forms a parabola. 
At y = h/2, duldy = 0, so u becomes u,,,: 

dPh2 u,,, = --- 
8p dx 

The volumetric flow rate Q becomes 

1 dP 
0 12p dx 

h 
Q = 1 udy= ---h3 

From this equation, the mean velocity u is 
Q 1 dP 1 =-= ---h2 = - u  
h 12pdx 1.5 

The shearing stress z due to viscosity becomes 

du l d p  
dy 2dx 

z=p-=-- - - (h-2~)  

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

The velocity and shearing stress distribution are shown ..i Fig. ".4. 
Figure 6.5 is a visualised result using the hydrogen bubble method. It is 

clear that the experimental result coincides with the theoretical result. 
Putting 1 as the length of plate in the flow direction and Ap as the pressure 

difference, and integrating in the x direction, the following relation is 
obtained: 

Fig. 6.5 Flow, between parallel plates (hydrogen bubble method), of water, velocity 0.5 mls, 
Re= 140 
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Fig. 6.6 Couette-Poiseuille flow4 

__- -  dP - AP (6.26) 
dx 1 

Aph3 
Substituting this equation into eqn (6.23) gives 

(6.27) 

As shown in Fig. 6.6, in the case where the upper plate moves in the x 
direction at constant speed U or -U, from the boundary conditions of u = 0 
at y = 0 and u = U at y = h, c1 and c2 in eqn (6.20) can be determined. Thus 

Q=- 
12p1 

(6.28) AP UY u = -(h - y)y f- w h 

h Aph3 Uh Q = /  0 U ~ Y = W * T  

Then, the volumetric flow rate Q is as follows: 

(6.29) 

6.3.2 Flow in circular pipes 

A flow in a long circular pipe is a parallel flow of axial symmetry (Fig. 6.7). 
In this case, it is convenient to use the Navier-Stokes equation (6.13) using 
cylindrical coordinates. Under the same conditions as in the previous section 
(6.3.1), simplify the upper equation in equation (6.13) to give 

dp d2u ldu = p  -+-- 
- dx (dr2 r dr) 

(6.31) u = --9 + c1 logr+ c2 

According to the boundary conditions, since the velocity at r = 0 must be 
finite c1 = 0 and c2 is determined when u = 0 at r = ro: 

4 Assume a viscous fluid flowing between two parallel plates; fix one of the plates and move the 
other plate at velocity U. The flow in this case is called Couette flow. Then, fix both plates, and 
have the fluid flow by the differential pressure. The flow in this case is called two-dimensional 
Poiseuille flow. The combination of these two flows as shown in Fig. 6.6 is called Couette- 
Poiseuille flow. 

(6.30) 

Integrating, 
1 dP 
4p dx 
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Fig. 6.7 Laminar flow in a circular pipe 

(6.32) 

From this equation, it is clear that the velocity distribution forms a 
paraboloid of revolution with u,,, at r = 0: 

1 dP u = ---(d - 9) 4p dx 

(6.33) --- 1 dp?$ 
4p dx urnax = 

The volumetric flow rate passing pipe Q becomes 

(6.34) Q=$2nrudr=--- nr: dp 
0 8 p  dx 

Q ri dp 1 

nri - 8pdx 2Umax 

From this equation, the mean velocity v is 

(6.35) v = - - ---= - 

The shear stress due to the viscosity is, 

(6.36)' du l d p  
2 dx 

T = -pZ = - - - r  

The velocity distribution and the shear distribution are shown in Fig. 6.7. 

5 Equation (6.36) can be deduced by the balance of forces. From the diagram 

Force acting on a cylindrical element in a round pipe 

dP - d- + 2xrrdx = 0 
dx du 

r = p -  dr 
(Since duldr < 0, T is negative, i.e. leftward.) 

(6.36)' du 1 dp 
dr 2pdx 

Thus 
- = - - r  

is obtained. 



Velocity distribution of laminar flow 93 

Gotthilf Heinrich Ludwig Hagen (1797-1884) 
German hydraulic engineer. Conducted experi- 
ments on the relation between head difference 
and flow rate. Had water mixed with sawdust flow 
in a brass pipe to observe its flowing state at the 
outlet. Was yet to discover the general similarity 
parameter including the viscosity, but reported 
that the transition from laminar to turbulent flow 
is connected with tube diameter, flow velocity and 
water temperature. 

A visualisation result using the hydrogen bubble method is shown in 

Putting the pressure drop in length I as Ap, the following equation is 
Fig. 6.8. 

obtained from eqn (6.33): 

(6.37) 

This relation was discovered independently by Hagen (1 839) and Poiseuille 
(1 841), and is called the Hagen-Poiseuille formula. Using this equation, the 
viscosity of liquid can be obtained by measuring the pressure drop Ap. 

Fig. 6.8 Velocity distribution, in a circular pipe (hydrogen bubble method), of water, velocity 2.4m/s, 
Re= 195 
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Jean Louis Poiseuille (1799-1869) 
French physician and physicist. Studied the pumping 
power of the heart, the movement of blood in vessels 
and capillaries, and the resistance to flow in a 
capillary. In his experiment on a glass capillary 
(diameter 0.029-0.142 mm) he obtained the experi- 
mental equation that the flow rate is proportional to  
the product of the difference in pressure by a power 
of 4 of the pipe inner diameter, and in inverse 
proportion to  the tube length. 

As stated in Section 4.4, flow in a round pipe is stabilised as laminar flow 
whenever the Reynolds number Re is less than 2320 or so, but the flow 
becomes turbulent through the transition region as Re increases. In turbulent 
flow, as observed in the experiment where Reynolds let coloured liquid flow, 
the fluid particles have a velocity minutely fluctuating in an irregular short 
cycle in addition to the timewise mean velocity. By measuring the flow with a 
hot-wire anemometer, the fluctuating velocity as shown in Fig. 6.9 can be 
recorded. 

For two-dimensional flow, the velocity is expressed as follows: 

u = ii + u’ lJ = F + d 

Fig. 6.9 Turbulence 
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Fig. 6.10 Momentum transport by turbulence 

where ti and E are the timewise mean velocities and u’ and u’ are the 
fluctuating velocities. 

Now, consider the flow at velocity u in the x direction as the flow between 
two flat plates (Fig. 6. IO), so u = U + u’ but u = u’. 

The shearing stress z of a turbulent flow is now the sum of laminar flow 
shearing stress (viscous friction stress) z,, which is the frictional force acting 
between the two layers at different velocities, and so-called turbulent shearing 
stress z,, where numerous rotating molecular groups (eddies) mix with each 
other. Thus 

z = 7,  + z, (6.38) 

Now, let us examine the turbulent shearing stress only. As shown in 
Fig. 6.10, the fluid which passes in unit time in the y direction through minute 
area dA parallel to the x axis is pu’dA. Since this fluid is at relative velocity 
u’, the momentum is pu’ dAu’. By the movement of this fluid, the upper fluid 
increases its momentum per unit area by pu’u’ in the positive direction of x 
per unit time. Therefore, a shearing stress develops on face dA. In other 
words, it is found that the shearing stress due to the turbulent flow is 
proportional to pu’u’. Reynolds, by substituting u = ti + u’, u = 8 + u’ into the 
Navier-Stokes equation, performed an averaging operation over time and 
derived -pu” as a shearing stress in addition to that due to the viscosity. 

Thus 
- 

z, = -pu’u’ (6.39) 

where z, is the stress developed by the turbulent flow, which is called the 
Reynolds stress. As can be seen from this equation, the correlation6 u” of 

6 In general, the mean of the product of a large enough number of two kinds of quantities is 
called the correlation. Whenever this value is large, the correlation is said to be strong. In 
studying turbulent flow, one such correlation is the timewise mean of the products of fluctuating 
velocities in two directions. Whenever this value is large, it indicates that the velocity fluctuations 
in two directions fluctuate similarly timewise. Whenever this value is near zero, it indicates that 
the correlation is small between the fluctuating velocities in two directions. And whenever this 
value is negative, it indicates that the fluctuating velocities fluctuate in reverse directions to each 
other. 
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Ludwig Prandtl(1875-1953) 
Born in Germany, Prandtl taught at Hanover 
Engineering College and then Gottingen University. 
He successfully observed, by using the floating 
tracer method, that the surface of bodies is covered 
with a thin layer having a large velocity gradient, 
and so advocated the theory of the boundary layer. 
He is called the creator of modern fluid dynamics. 
Furthermore, he taught such famous scholars as 
Blasius and Karman. Wrote The Hydrohgy. 

the fluctuating velocity is necessary for computing the Reynolds stress. Figure 
6.1 1 shows the shearing stress in turbulent flow between parallel flat plates. 

Expressing the Reynolds stress as follows as in the case of laminar flow 
dii 

T, = pv- (6.40) 
dY 

produces the following as the shearing stress in turbulent flow: 

(6.41) 

This v, is called the turbulent kinematic viscosity. v, is not the value of a 
physical property dependent on the temperature or such, but a quantity 
fluctuating according to the flow condition. 

Prandtl assumed the following equation in which, for rotating small parcels 

dii 
T = T, + 7, = p(v + V J -  

dY 

Fig. 6.11 Distribution of shearing stresses of flow between parallel flat plates (enlarged near the 
wall) 
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Fig. 6.12 Correlation of u’ and v’ 

of fluid of turbulent flow (eddies) travelling average length, the eddies 
assimilate the character of other eddies by collisions with them: 

(6.42) 
I dii 

lull 2 Ju I = 1 - 
Idyl 

Prandtl called this I the mixing length. 
According to the results of turbulence measurements for shearing flow, 

the distributions of u‘ and u’ are as shown in Fig. 6.12, where u’u’ has a large 
probability of being negative. Furthermore, the mixing length is redefined as 
follows, including the constant of proportionality: 

2 -a= IiG) 
so that 

- 
T, = -pU’U’ = p12 - (6.43)7 

The relation in eqn (6.43) is called Prandtl’s hypothesis on mixing length, 
which is widely used for computing the turbulence shearing stress. Mixing 
length I is not the value of a physical property but a fluctuating quantity 
depending on the velocity gradient and the distance from the wall. This 

c;y 

’ 
gradient, it is described as follows: 

According to the convention that the symbol for shearing stress is related to that of velocity 

dii dii 
T, = P I 2  - - 

Id7ldY 
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Fig. 6.13 Smoke vortices from a chimney 

introduction of 1 is replaced in eqn (6.40) to produce a computable fluctuating 
quantity. 

At this stage, however, Prandtl came to a standstill. That is, unless some 
concreteness was given to 1, no further development could be undertaken. At 
a loss, Prandtl went outdoors to refresh himself. In the distance there stood 
some chimneys, the smoke from which was blown by a breeze as shown in 
Fig. 6.13. He noticed that the vortices of smoke near the ground were not so 
large as those far from the ground. Subsequently, he found that the size of 
the vortex was approximately 0.4 times the distance between the ground and 
the centre of the vortex. On applying this finding to a turbulent flow, he 
derived the relation 1 = 0.4~.  By substituting this relation into eqn (6.43), the 
following equation was obtained: 

(6.44) 

Next, in an attempt to establish z,, he focused his attention on the flow near 
the wall. There, owing to the presence of wall, a thin layer 6, developed where 
turbulent mixing is suppressed and the effect of viscosity dominates as shown 
in Fig. 6.14. This extremely thin layer is called the viscous sublayer.' Here, 
the velocity distribution can be regarded as the same as in laminar flow, and 
v, in eqn (6.41) becomes almost zero. Assuming zo to be the shearing stress 
acting on the wall, then so far as this section is concerned: 

or 
T o  u 
P Y  
_ -  - v- (6.45) 

has the dimension of velocity, and is called the friction velocity, 

Until some time ago, this layer had been conceived as a laminar flow and called the laminar 
sublayer, but recently research on visualisation by Kline at Stanford University and others found 
that the turbulent fluctuation parallel to the wall (bursting process) occurred here, too. 
Consequently, it is now called the viscous sublayer. 
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Fig. 6.14 Viscous sublayer 

symbol u, ( u  star). Substituting, eqn (6.45) becomes: 

u V*Y 

V* v 
_ - _  - 

Putting u = ug whenever y = 6, gives 

(6.46) 

(6.47) 

where Rg is a Reynolds number. 

beyond the viscous sublayer, assume z, = z,,~ and integrate eqn (6.44): 
Next, since turbulent flow dominates in the neighbourhood of the wall 

- 
U 
- = 2.5 In y + c 
u* 

(6.48) 

Using the relation ii = ug when y = do, 

(6.49) Ub 

v* 
c = - - 2.5 In 6, = Rg - 2.5 In 6, 

Substituting the above into eqn (6.48) gives 

Using the relation in eqn (6.47), 
- 

("I') 
U 
- -2Sln  - + A  
v* 

(6.50) 

If a/u*, is plotted against log,,(u,y/v), it turns out as shown in Fig. 6.15 giving 
A = 5.5." 

7, = r0 was the assumption for the case in the neighbourhood of the wall, and this equation is 
reasonably applicable when tested off the wall in the direction towards the centre. (Goldstein, S., 
Modern Developments in Fluid Dynamics, (1965), 336, Dover, New York). 
l o  It may also be expressed as P/u, = u', u.y/v = y+ . 
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Theodor von Karman (1881-1963) 
Studied at the Royal Polytechnic Institute of Budapest, 
and took up teaching positions at Gottingen University, 
the Polytechnic Institute of Aachen and California 
Institute of Technology. Beginning with the study of 
vortices in the flow behind a cylinder, known as the 
Karmanvortexstreet, heleft many achievement sin fluid 
dynamics including drag on a body and turbulent flow. 
Wrote Aerodynamics: Selected Topics in the Lkht of 
Their Historical Development. 

- C) (6.51) - = 5.7510g - + 5.5 

This equation is considered applicable only in the neighbourhood of the 
wall from the viewpoint of its derivation. As seen from Fig. 6.15, however, it 
was found to be applicable up to the pipe centre from the comparison with 
the experimental results. This is called the logarithmic velocity distribution, 
and it is applicable to any value of Re. 

In addition, Prandtl separately derived through experiment the following 

U 

u* 

Fig. 6.15 Velocity distribution in a circular pipe (experimental values by Reichardt) 
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Fig. 6.16 Velocity distribution of turbulent flow 

equation of an exponential function as the velocity distribution of a turbulent 
flow in a circular pipe as shown in Fig. 6.16: 

- I /n '=(;) - ( O I Y I r o )  (6.52) 
%llax 

n changes according to Re, and is 7 when Re = 1 x lo5. Since many cases 
are generally for flows in this neighbourhood, the equation where n = 7 is 
frequently used. This equation is called the Karman-Prandtl 1 /7  power law.'' 
Furthermore, there is an experimental equation" of n = 3.45ReO.O'. v/u,,, is 

Figure 6.16 also shows the overlaid velocity distributions of laminar and 
turbulent flows whose average velocities are equal. 

Most flows we see daily are turbulent flows, which are important in such 
applications as heat transfer and mixing. Alongside progress in measuring 
technology, including visualisation techniques, hot-wire anemometry and 
laser Doppler velocimetry, and computerised numerical computation, much 
research is being conducted to clarify the structure of turbulent flow. 

0.8-0.88 

If the movement of fluid is not affected by its viscosity, it could be treated 
as the flow of ideal fluid and the viscosity term of eqn (6.11) could be omitted. 
Therefore, its analysis would be easier. The flow around a solid, however, 
cannot be treated in such a manner because of viscous friction. Nevertheless, 
only the very thin region near the wall is affected by this friction. Prandtl 
identified this phenomenon and had the idea to divide the flow into two 
regions. They are: 

1. the region near the wall where the movement of flow is controlled by the 

2. the other region outside the above not affected by the friction and, 

The former is called the boundary layer and the latter the main flow. 

frictional resistance; and 

therefore, assumed to be ideal fluid flow. 

I '  Schlichting, H., Boundary Layer Theory, (1968), 563, McGraw-Hill, New York. 
'* Itaya, M, Bulletin o fJSME,  7-26, (1941-2), 111-25. 
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This idea made the computation of frictional drag etc. acting on a body 
or a channel relatively easy, and thus enormously contributed to the progress 
of fluid mechanics. 

6.5.1 Development of boundary layer 

As shown in Fig. 6.17, at a location far from a body placed in a flow, the flow 
has uniform velocity U without a velocity gradient. On the face of the body 
the flow velocity is zero with absolutely no slip. For this reason, owing to the 
effect of friction the flow velocity near the wall varies continuously from zero 
to uniform velocity. In other words, it is found that the surface of the body 
is covered by a coat comprising a thin layer where the velocity gradient is 
large. This layer forms a zone of reduced velocity, causing vortices, called a 
wake, to be cast off downstream of the body. 

We notice the existence of boundary layers daily in various ways. For 
example, everybody experiences the feeling of the wind blowing (as shown in 
Fig. 6.18) when standing in a strong wind at the seaside; however, by 
stretching out on the beach much less wind is felt. In this case the boundary 
layer on the ground extends to as much as l m  or more, so the nearer the 

Fig. 6.17 Boundary layer around body 

Fig. 6.18 Man lying down is less affected by the coastal breeze than woman standing up 



Boundary layer 103 

Fig. 6.19 Development of boundary layer on a flat plate (thickness 5 mm) in water, velocity 0.6 m/s 

ground the smaller the wind velocity. The velocity u within the boundary 
layer increases with the distance from the body surface and gradually 
approaches the velocity of the main flow. Since it is difficult to distinguish the 
boundary layer thickness, the distance from the body surface when the 
velocity reaches 99% of the velocity of the main flow is defined as the 
boundary layer thickness 6. The boundary layer continuously thickens with 
the distance over which it flows. This process is visualized as shown in Fig. 
6.19. This thickness is less than a few millimetres on the frontal part of a 
high-speed aeroplane, but reaches as much as 50cm on the rear part of an 
airship. 

When the flow distribution and the drag are considered, it is useful to use 
the following displacement thickness 6* and momentum thickness 0 instead 
of 6. 

U6* = ( U  - u)dy (6.53) 

pU28 = p 1 u(V - u)dy (6.54) 

6* is the position which equalises two zones of shaded portions in Fig. 
6.20(a). It corresponds to an amount 6' by which, owing to the development 

c 
00 

0 

Fig. 6.20 Displacement thickness (a) and momentum thickness (b) 
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Fig. 6.21 Boundary layer on a flat board surface 

of the boundary layer, a body appears larger to the external flow compared 
with the case where the body is an inviscid fluid. Consequently, in the case 
where the state of the main flow is approximately obtained as inviscid flow, a 
computation which assumes the body to be larger by 6* produces a result 
nearest to reality. Also, the momentum thickness 8 equates the momentum 
decrease per unit time due to the existence of the body wall to the momentum 
per unit time which passes at velocity U through a height of thickness 6. The 
momentum decrease is equivalent to the force acting on the body according to 
the law of momentum conservation. Therefore the drag on a body generated 
by the viscosity can be obtained by using the momentum thickness. 

Consider the case where a flat plate is placed in a uniform flow. The flow 
velocity is zero on the plate surface. Since the shearing stress due to viscosity 
acts between this layer and the layer immediately outside it, the velocity of 
the outside layer is reduced. Such a reduction extends to a further outside 
layer and thus the boundary layer increases its thickness in succession, 
beginning from the front end of the plate as shown in Fig. 6.21. 

In this manner, an orderly aligned sheet of vorticity diffuses. Such a layer 
is called a laminar boundary layer, which, however, changes to a turbulent 
boundary layer when it reaches some location downstream. 

This transition to turbulence is caused by a process in which a very minor 
disturbance in the flow becomes more and more turbulent until at last it 
makes the whole flow turbulent. The transition of the boundary layer 
therefore does not occur instantaneously but necessitates some length in the 
direction of the flow. This length is called the transition zone. In the 
transition zone the laminar state and the turbulent state are mixed, but the 
further the flow travels the more the turbulent state occupies until at last it 
becomes a turbulent boundary layer. 

The velocity distributions in the laminar and turbulent boundary layers 
are similar to those for the flow in a pipe. 

6.5.2 Equation of motion of boundary layer 

Consider an incompressible fluid in a laminar boundary layer. Each 
component of the equation of motion in the y direction is small compared 
with that in the x direction, while #u/ax2 is also small compared with 
t?u/ay*. Therefore, the Navier-Stokes equations (6.12) simplify the following 
equations: 
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ap a% 
p u-+u-  = - - + p -  ( E g) ax a$ 

The continuity equation is as follows: 

(6.55) 

(6.56) 

(6.57) 

Equations (6.55)+6.57) are called the boundary layer equations of laminar 
flow. 

For a steady-state turbulent boundary layer, with similar considerations, 
the following equations result: 

(6.58) 

(6.59) 

(6.60) 

(6.61) 

Equations (6.58)-(6.61) are called the boundary layer equations of turbulent 
flow. 

6.5.3 Separation of boundary layer 

In a flow where the pressure decreases in the direction of the flow, the fluid 
is accelerated and the boundary layer thins. In a contraction flow, the 
pressure has such a negative (favourable) gradient that the flow stabilises 
while the turbulence gradually decreases. 

In contrast, things are quite different in a flow with a positive (adverse) 
pressure gradient where the pressure increases in the flow direction, such as a 
divergent flow or flow on a curved wall as shown in Fig. 6.22. Fluid far off 
the wall has a large flow velocity and therefore large inertia too. Therefore, 
the flow can proceed to a downstream location overcoming the high pressure 
downstream. Fluid near the wall with a small flow velocity, however, cannot 
overcome the pressure to reach the downstream location because of its small 
inertia. Thus the flow velocity becomes smaller and smaller until at last the 
velocity gradient becomes zero. This point is called the separation point of 
the flow. Beyond it the velocity gradient becomes negative to generate a flow 
reversal. In this separation zone, more vortices develop than in the ordinary 
boundary layer, and the flow becomes more turbulent. For this reason the 
energy loss increases. Therefore, an expansion flow is readily destabilised 
with a large loss of energy. 
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Fig. 6.22 Separation of boundary layer 

As shown in Fig. 6.23, consider two planes with a wedge-like gap containing 
an oil film between them. Assume that the upper plane is stationary and of 
length 1 inclined to the x axis by a, and that the lower plane is an infinitely 
long plane moving at constant velocity U in the x direction. By the movement 
of the lower plane the oil stuck to it is pulled into the wedge. As a result, 
the internal pressure increases to push up the upper plane so that the two 
planes do not come into contact. This is the principle of a bearing. In this 
flow, since the oil-film thickness is small in comparison with the length of 
plane in the flow direction, the flow is laminar where the action of viscosity is 
very dominant. Therefore, by considering it in the same way as a flow 
between parallel planes (see Section 6.3. l), the following equation is obtained 
from eqn (6.12): 

dp #u - = pz 
dx ay 

(6.62) 

Fig. 6.23 Flow and pressure distribution between inclined planes (slide bearing) 
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In this case, the pressure p is a function of x only, so the left side is an 
ordinary differential. 

Integrate eqn (6.62) and use boundary conditions u = U ,  y = h and u = 0 
at y = 0. Then 

(6.63) 

The flow rate Q per unit width passing here is 
h 

Q = /  0 udy 

Substituting eqn (6.63) into (6.64), 

Uh h3 dp 
2 12pdx 

Q=---- 

From the relation (h ,  - hz)/ l  = a, 

h = h, - ax 

Substituting the above into eqn (6.65), 

_ -  dP 6PU - 12PQ - 
dx (h,  - ax)' (h ,  - ax)3 

Integrating eqn (6.67), 

6pQ + c  6PU - P =  a(h, - ax) a(h, - ax)' 
Assume p = 0 when x = 0 ,  x = 1, so 

Equation (6.68) becomes as follows: 

(6.64) 

(6.65) 

(6.66) 

(6.67) 

(6.68) 

(6.69) 

From eqn (6.69), since h > h,, p > 0. Consequently, it is possible to have the 
upper plane supported above the lower plane. This pressure distribution is 
illustrated in Fig. 6.23. By integrating this pressure, the supporting load P 
per unit width of bearing is obtained: 

(6.70) 

From eqn (6.70), the force P due to the pressure reaches a maximum when 
h, /h ,  = 2.2. At this condition P is as follows: 

pu12 

h: 
P,,, = 0.16- (6.71) 

This slide bearing is mostly used as a thrust bearing. The theory of 
lubrication above was first analysed by Reynolds. 
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The principle of the journal bearing is almost the same as the above case. 
However, since oil-film thickness h is not expressed by the linear equation of 
x as shown by eqn (6.66), the computation is a little more complicated. This 
analysis was performed by Sommerfeld and others. 

Homer sometimes nods 
This is an example in which even such a great figure as Prandtl made a wrong assumption. On 
one occasion, under the guidance of Prandtl, Hiementz set up a tub to make an experiment 
for observing a separation point on a cylinder surface. The purpose was to confirm 
experimentally the separation point computed by the boundary layer theory. Against his 
expectation, the flow observed in the tub showed violent vibrations. 

Hearing of the above vibration, Prandtl responded, 'It was most likely caused by the 
imperfect circularity of the cylinder section shape.' 

Nevertheless, however carefully the cylinder was reshaped, the vibrations never ceased. 
Karman, then an assistant to Prandtl, assumed there was some essential natural 

phenomenon behind it. He tried to compute the stability of vortex alignment. Summarising the 
computation over the weekend, he showed the summary to Prandtl on Monday for his 
criticism. Then, Prandtl told Karman, 'You did a good job. Make it up into a paper as quickly as 
possible. I will submit it for you to the Academy.' 

A bird stalls 
Karman hit upon the idea of making a bird stall by utilising his knowledge in aerodynamics. 
When he was standing on the bank of Lake Constance with a piece of bread in his hand, a gull 
approached him to snatch the bread. Then he slowly withdrew his hand, and the gull tried to 
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slow down its speed for snatching. To do this, it had to increase the lift of its wings by 
increasing their attack angles. In the course of this, the attack angles probably exceeded their 
effective limits. Thus the gull sometimes lost its speed and fell (see 'stall', page 164). 

Benarl and Karman 
Karmin's train of vortices has been known for so long that it is said to appear on a painting 
inside an ancient church in Italy. Even before Karman, however, Professor Henry Benarl 
(1 874-1939) of a French university observed and photographed this train of vortices. 
Therefore, Benarl insisted on his priority in observing this phenomenon at a meeting on 
International Applied Dynamics. Karman responded at the occasion 'I am agreeable to calling 
Henry 8enarl Street in Paris what is called Karman Street in Berlin and London.' With this joke 
the two became good friends. 

1. Show that the continuity equation in the flow of a two-dimensional 
compressible fluid is as follows: 

aP a ( P )  K P V )  -+- +-=O 
at ax ay 

2. If the flow of an incompressible fluid is axially symmetric, develop the 
continuity equation using cylindrical coordinates. 

3. If flow is laminar between parallel plates, derive equations expressing 
(a) the velocity distribution, (b) the mean and maximum velocity, (c) the 
flow quantity, and (d) pressure loss. 
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4. If flow is laminar in a circular tube, derive equations expressing (a) the 
velocity distribution, (b) the mean and maximum velocity, (c) the flow 
quantity, and (d) pressure loss. 

5 .  If flow is turbulent in a circular tube, assuming a velocity distribution 
u = ~ , , ( y / r ~ ) ’ / ~ ,  obtain (a) the relationship between the mean velocity 
and the maximum velocity, and (b) the radius of the fluid flowing at 
mean velocity. 

6. Water is flowing at a mean velocity of 4cm/s in a circular tube of 
diameter 50 cm. Assume the velocity distribution u = ~~~.(y/r~)’~’. If the 
shearing stress at a location 5cm from the wall is 5.3 x 10-3N/m2, 
compute the turbulent kinematic viscosity and the mixing length. Assume 
that the water temperature is 20°C and the mean velocity is 0.8 times 
the maximum velocity. 

7. Consider a viscous fluid flowing in a laminar state through the annular 
gap between concentric tubes. Derive an equation which expresses the 
amount of flow in this case. Assume that the inner diameter is d, the gap 
is h, and h << d. 

8. Oil of 0.09 Pas (0.9 P) fills a slide bearing with a flat upper face of length 
60 cm. A load of 5 x 10’ N per 1 cm of width is desired to be supported 
on the upper surface. What is the maximum oil-film thickness when the 
lower surface moves at a velocity of 5 m/s? 

9. Show that the friction velocity - (zo: shearing stress of the wall; p: 
fluid density) has the dimension of velocity. 

10. The piston shown in Fig. 6.24 is moving from left to right in a cylinder 
at a velocity of 6m/s. Assuming that lubricating oil fills the gap 
between the piston and the cylinder to produce an oil film, what is the 
friction force acting on the moving piston? Assume that the kinematic 
viscosity of oil v = 50cSt, specific gravity = 0.9, diameter of cylinder 
d, = 122mm, diameter of piston d2 = 125 mm, piston length 1 = 160mm, 
and that the pressure on the left side of the piston is higher than that on 
the right side by 10 kPa. 

Fig. 6.24 


